

CURSO DE ESPECIALIZACIÓN

PAILERÍA CON ENFOQUE EN CÁLCULO TRIGONOMÉTRICO PARA EL ARMADO DE PIEZAS DE VOLUMEN MANTENIMIENTO

Los objetivos, competencias, contenido y duración del curso deben ser ajustados, de común acuerdo con la empresa, con el objetivo de lograr la mayor cobertura posible a las necesidades de capacitación detectadas.

DURACIÓN:

46 horas

ESCUELA INDUSTRIAL DE MÉXICO

15 de Mayo #202, entre Guerrero y Galeana Col. Centro, Monterrey, N.L. Tel. 81-2087-0868 E-mail: info@ptsmonterrey.com www.ptsmonterrey.com

OBJETIVOS:

Dominar el cálculo trigonométrico aplicado a la resolución de problemas geométricos en piezas 3D (conos, tolvas, ductos curvos).

Interpretar planos técnicos con énfasis en desarrollos de superficies (despiece de láminas). Optimizar el proceso de trazado y corte de láminas metálicas para minimizar desperdicios. Implementar técnicas de ensamblaje para estructuras volumétricas con ajustes milimétricos. Fomentar prácticas seguras en el manejo de herramientas y maquinaria pesada.

COMPETENCIAS

Aplicar senos, cosenos y tangentes para determinar ángulos y longitudes en piezas no planas.

Resolver triángulos esféricos en intersecciones de tuberías o ductos.

Identificar cotas críticas, radios de curvatura y tolerancias en piezas volumétricas.

Uso de compases de varilla, flexómetros láser y niveles digitales.

Operación de cortadoras plasma y CNC para trazados complejos.

Técnicas de fijación temporal (soldadura por puntos, grampas) para estructuras 3D. Ajuste de márgenes por dilatación térmica. Verificación de medidas con equipos metrológicos (calibradores, micrómetros).

CONTENIDO DEL CURSO

- 1.TRIGONOMETRÍA APLICADA A LA PAILERÍA
- A. Repaso de conceptos:
- i. -Triángulos rectángulos y oblicuos.
- ii. -Teorema del coseno y ley de senos.
- B. Casos prácticos:
- i. Cálculo de longitudes reales en desarrollos de conos truncados.
- ii. Determinación de ángulos de doblez en tolvas cilíndrico-cónicas.
- iii. Resolución de intersecciones tubulares (ej.: "T" esférica).
- 2. TRAZADO Y DESARROLLO DE SUPERFICIES
- A. Técnicas de desarrollo:
- i. Método de paralelas y radial para conos, pirámides y esferas.
- ii. Uso de fórmulas para calcular circunferencias desarrolladas (πD vs. perímetro real).
- B. Práctica con software:
- i. Herramientas CAD (AutoCAD, SolidWorks) para generar plantillas.
- ii. Simulación de cortes en lámina (optimización de layouts).
- C. Taller:
- i. Trazado manual de un ducto curvo (ej.: codo de 90º con radio largo).
- 3. CORTE Y CONFORMADO DE LÁMINAS
- A. Selección de materiales:
- i. Espesores y aleaciones (acero al carbón, inoxidable, aluminio).
- B. Tecnologías de corte:
- i. Plasma, láser y oxicorte (ventajas y limitaciones).
- ii. Uso de máquinas CNC para cortes complejos. (simulación)
- C. Práctica:
- i. Corte de una tolva asimétrica con ángulos variables.
- 4. ARMADO Y AJUSTE DE PIEZAS 3D
- A. Técnicas de ensamblaje:
- i. Montaje de piezas con puntos de referencia (cruces de centro).
- ii. Soldadura por tack para fijación temporal.
- iii. Corrección de deformaciones por tensión residual.

- B. Proyecto integrador:
- i. Construcción de una estructura multitubular (ej.: marco para equipo industrial).
- 5. CONTROL DE CALIDAD Y NORMATIVAS
- A. Inspección dimensional:
- i. Uso de niveles láser y teodolitos para verificar alineación.
- ii. Tolerancias según normas ASME B16.9 o API 5L.
- B. Seguridad:
- i. Protocolos para manejo de gases, soldadura y equipos pesados (OSHA 1910).
- 6. PRÁCTICA Y PROYECTO FINAL
- A. Aplicación de las habilidades adquiridas en un proyecto práctico.
- B. Evaluación de la calidad y precisión del trabajo.

