

CURSO DE ESPECIALIZACIÓN

AJUSTE FRENOS MAGNÉTICOS

Los objetivos, competencias, contenido y duración del curso deben ser ajustados, de común acuerdo con la empresa, con el objetivo de lograr la mayor cobertura posible a las necesidades de capacitación detectadas.

DURACIÓN:

8 horas

ESCUELA INDUSTRIAL DE MÉXICO

15 de Mayo #202, entre Guerrero y Galeana Col. Centro, Monterrey, N.L. Tel. 81-2087-0868

E-mail: info@ptsmonterrey.com www.ptsmonterrey.com

OBJETIVOS:

Capacitar en técnicas de ajuste y calibración de frenos magnéticos para garantizar su eficiencia y seguridad.

Identificar componentes críticos (bobinas, imanes, sensores) y su influencia en el rendimiento del freno.

Aplicar protocolos de seguridad durante el ajuste y mantenimiento de sistemas magnéticos energizados.

Diagnosticar y corregir fallos comunes (desajustes de torque, desalineación, sobrecalentamiento).

COMPETENCIAS

Realizar mediciones precisas (aire gap, resistencia eléctrica, torque).

Ajustar parámetros clave (intensidad de corriente, distancia de frenado).

Interpretar especificaciones técnicas de fabricantes (ej.: torque nominal, límites térmicos). Utilizar herramientas especializadas (multímetros, galgas de espesor, llaves dinamométricas). Implementar planes de mantenimiento preventivo para frenos magnéticos.

CONTENIDO DEL CURSO

1.INTRODUCCIÓN A LOS FRENOS MAGNÉTICOS

- A. Tipos de frenos magnéticos:
- i. Electromagnéticos (accionados por bobina).
- ii. Eddy Current (corrientes parásitas).
- B. Componentes clave:
- i. Bobinas, núcleos ferromagnéticos, placas conductoras.
- ii. Sistemas de refrigeración (ventilación, disipadores).
- C. Normas de seguridad básicas:
- i. Manipulación de sistemas energizados (EPP: quantes aislantes, gafas).
- 2. HERRAMIENTAS Y MEDICIONES
- A. Instrumentos de ajuste:
- i. Multímetro (medición de resistencia y continuidad).
- ii. Galgas para medir aire gap (distancia entre rotor y estator).
- iii. Llave dinamométrica (ajuste de pernos según torque especificado).
- B. Práctica guiada:
- i. Medición de resistencia en bobinas.
- ii. Verificación de alineación del rotor.
- 3. TÉCNICAS DE AJUSTE
- A. Proceso paso a paso:
- i. Ajuste del aire gap:

Uso de calibres y tornillos de regulación.

Compensación por desgaste térmico.

- ii. Calibración de corriente eléctrica:
- Ajuste de la potencia para alcanzar el torque requerido.
- iii. Verificación del torque de frenado:

Uso de bancos de prueba o simuladores.

- B. Caso práctico:
- Ajuste de un freno magnético en un motor industrial.

- 4. MANTENIMIENTO Y RESOLUCIÓN DE PROBLEMAS
- A. Fallos comunes y soluciones:
- i. Sobrecalentamiento: Limpieza de disipadores, verificación de ventilación.
- ii. Pérdida de eficiencia: Reemplazo de bobinas dañadas, ajuste de aire gap.
- iii. Ruido o vibraciones: Alineación del rotor, lubricación de soportes.
- B. Plan de mantenimiento preventivo:
- i. Checklist para inspecciones periódicas.

